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Abstract. A researcher wants to ask a decision-maker about a belief related to a choice the decision-
maker made. When can the researcher provide incentives for the decision-maker to report her belief
truthfully without distorting her choice? We identify which questions can be incentivized in this
way in three canonical classes of problems. For these questions, we construct a simple mechanism
the researcher can use.

1. Introduction

Researchers who conduct experiments in economics frequently ask subjects to make a choice facing
some uncertainty and then wish to elicit subjects’ beliefs related to their choice. For example, the
researcher may want to ask the subject about how confident they are that they made the best possible
choice ex post (i.e., the probability the subject assigns to the unknown state being one in which their
choice is optimal). Or, following completion of a multiple-choice test, the researcher may want to ask
the subject how likely they believe it is that their score exceeds a certain cutoff, or, more generally,
that it lies within a certain range.

To ensure that the subjects’ reported beliefs are reliable, researchers typically provide incentives
that make truthful reporting optimal.1 However, when the belief to be elicited is tied to an action
choice, doing so could distort the incentives governing that choice. To take a simple example, suppose
the subject must answer a multiple-choice question and then is asked the probability that they gave
the correct answer. Suppose moreover that the subject is rewarded at the belief elicitation stage with a
payment that is increasing in the probability the subject assigns to the correct event (namely, whether
their answer was correct or not). Then a subject who is not confident about the correct answer but is
confident that one of the answers is incorrect may be able to increase their overall expected payment
by choosing the obviously incorrect answer and then reporting a low probability that it is correct,
thereby obtaining a high expected payoff at the belief elicitation stage.

We introduce a model combining a general decision problem with a belief elicitation stage. The
model allows us to consider a wide variety of belief elicitation questions: a question is described
by a function X(a, θ) that, following an action choice a in the decision problem, asks the subject

Date: December 5, 2024.
1See Healy and Leo (2024) for a discussion of incentivized vs. unincentivized belief elicitation.
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the expectation of X(a, θ) according to their subjective belief about the unknown state θ. We say
that a question is incentivizable if there exists a payment scheme at the belief elicitation stage for
which (i) truthfully reporting the expectation of X(a, θ) always maximizes the subject’s expected
payment, and (ii) the incentives in the decision problem are not distorted, meaning that for any belief
the subject may have about θ, the optimal action in the decision problem remains optimal in the
combined problem that includes the belief elicitation stage. When incentives are provided that satisfy
these two criteria, the researcher can honestly tell the subject that she will maximize the payment
she can expect to receive by choosing the action she believes is optimal in the decision problem and
then reporting her belief truthfully; these instructions should minimize any attempts by the subject
to distort their behavior.2

Two related features distinguish our approach from previous work on belief elicitation. First, the
researcher asks the subject only to report a single number.3 Second, the quantity of interest to the
researcher—as described by the question X(a, θ)—depends non-trivially on the subject’s choice of
action in the decision problem. In the absence of either of these features, any question X(a, θ) is
incentivizable using standard methods. For example, if the researcher could ask the subject to report
her entire belief, it would be enough to incentivize truthful reports and randomly reward the subject
either for her choice in the decision problem or for her reported belief. From a practical perspective,
however, this approach could be burdensome for subjects if there are more than a few states to report
on; if the researcher is only interested in a one-dimensional statistic of the belief, asking about it
directly could reduce noise in the reports.

We first identify questions that are incentivizable regardless of the decision problem; we refer to
these questions as being aligned with the utility u(a, θ) in the decision problem. Alignment allows for
all questions that can be obtained by applying two operations to u(a, θ): (i) the addition of a function
d(θ) that does not depend on a, and (ii) an affine transformation of the resulting function u(a, θ)+d(θ)
with coefficients that can depend on a but not on θ. Thus, for example, asking the subject about the
payoff she expects to receive in the decision problem is incentivizable, as is her willingness to pay to
have her action replaced with an ex post optimal one.4 However, the question that asks the subject
about the probability that her choice is ex post optimal does not generally take this form (and indeed
is, in many problems, not incentivizable). A researcher interested in eliciting a measure of cognitive
uncertainty (Enke and Graeber, 2023) may therefore do better to ask about the subject’s expected
payoff relative to the optimum rather than the probability that their action is optimal.

2Danz, Vesterlund, and Wilson (2022) find that instructions along these lines increase truthful reporting in a belief
elicitation problem relative to explicit incentives.

3We discuss in Section 8.4 how to extend our methods to multiple questions.
4The latter question directly extends a simpler one used by Hu (2023) to elicit whether subjects were uncertain

about the optimality of their choices.
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Figure 1.1. Summary of main results.

Whether and which other questions are incentivizable depends on the structure of the decision
problem. A particularly important role is played by what we call the “adjacency graph.” Two actions
are adjacent if there is some belief at which they are both optimal and no other action is. We show
that each adjacency places restrictions on how the questions following the adjacent actions are related
to one another. Problems with more adjacencies therefore tend to involve stronger restrictions on
which questions are incentivizable.

We fully characterize the set of incentivizable questions in three canonical classes of decision prob-
lems that differ in the structure of the adjacency graph: complete adjacency, adjacency trees, and
product adjacency. (For complete and product adjacency, we also make some mild richness assump-
tions regarding linear independence of payoffs.) Figure 1.1 summarizes the results.

Complete adjacency graphs naturally arise in problems in which decision-maker chooses an action to
match an unknown state and receives a payoff based on whether or not they succeed, as in a multiple-
choice question where the state corresponds to which answer is correct and the subject receives a
payment for a correct answer. In these problems, only questions that are aligned with the utility (in
the sense described above) are incentivizable.

Adjacency trees naturally arise in some problems with ordered states and actions that are monotone
in beliefs. For example, if states and actions are real numbers and the subject incurs a quadratic loss
based on the distance between her action and the state, then the adjacency graph forms a line.5

5A typical example is when the decision problem is itself a belief elicitation problem—such as one of belief updating—
with the states representing objective probabilities known to the researcher.
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Because there are so few adjacencies, this case is, in a sense, the most permissive in terms of which
questions are incentivizable. In particular, alignment with the utility on the full set of actions is no
longer necessary; it suffices for the question to be “piecewise aligned,” meaning, in this case, that for
each pair of adjacent actions it is aligned with the utility (but with the parameters governing the
alignment possibly differing across pairs).

Product adjacencies arise when the decision problem comprises a number of separate tasks with
complete adjacency graphs and the subject’s expected reward is a sum of rewards across these tasks.
For example, the subject may complete a multiple-choice test and receive a payment proportional
to their score. The adjacency graph has a simple structure: two actions are adjacent if only if they
differ on a single task. In this case, a question is incentivizable if and only if it is aligned with some
weighted sum of the utilities in the various tasks (but not necessarily aligned with the overall utility
in the decision problem). Thus, for example, a question that asks the subject about the likelihood
that her score is above some fixed cutoff is not incentivizable, while a question that asks about the
expected improvement in her score across two parts of the test is.

For all of the questions that we show are incentivizable, we provide a simple construction of pay-
ments satisfying both of our incentivizability criteria. This construction is based on the classic Becker-
DeGroot-Marschak method. One can first normalize X(a, θ) to lie in [0, 1], and then elicit the value of
y ∈ [0, 1] at which the subject is indifferent between winning the prize with probability y and winning
it with probability X(a, θ).6

We are not the first to observe that incentivized belief elicitation can distort other decisions. Cham-
bers and Lambert (2021) and Healy and Leo (2024) discuss the possibility that a subject would pur-
posefully fail a test to increase their payment from belief elicitation about their likelihood of passing.
Möbius et al. (2022) describes how their belief elicitation mechanism is designed to preserve incentives
in their main task. Blanco et al. (2010) find evidence that, in some problems, subjects who are paid
for both a choice in a game and a reported belief take advantage of hedging opportunities, distorting
either choice (or both). We implicitly assume that subjects are randomly paid either for the main
task or the reported belief, eliminating such hedging opportunities.

The problem we study is motivated in part by Enke and Graeber (2023) and related and follow-up
papers (e.g., Amelio, 2022; Arts, Ong, and Qiu, 2024; Xiang et al., 2021).7 In each of these papers,
subjects’ cognitive uncertainty is elicited using unincentivized questions. Hu (2023) is the first paper
we are aware of that provides strict incentives for subjects to reveal whether they are uncertain about
their decision. His mechanism is essentially a simplified version of the Becker-DeGroot-Marschak

6A typical method for eliciting y is a multiple-price list that asks the subject to choose between probabilities y and
X(a, θ) for various values of y, then choose one such choice at random for payment.

7This work follows a longer history of using questions about confidence in decisions that is not expressed in proba-
bilistic terms, going back at least to Butler and Loomes (2007).
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mechanism we employ; in his, subjects make a binary choice of whether to pay a cost to have some
chance that their action can be replaced with the optimal one.

Belief elicitation has been widely studied and used in both theory and experiments (see Schlag,
Tremewan, and Van der Weele (2015), Charness, Gneezy, and Rasocha (2021), Haaland, Roth, and
Wohlfart (2023), and Healy and Leo (2024) for surveys). The closest theoretical work to this proposal
is that of Lambert, Pennock, and Shoham (2008) and Lambert (2019), which ask which properties of
distributions can be elicited. Our model shares the feature that the belief elicitation question does
not ask the decision-maker to report their entire belief. We sidestep their question of elicitability
by restricting attention to questions that always correspond to elicitable properties, and we add the
condition that the elicitation must not distort the decisions in the main decision problem.

In experiments, the binarized scoring rule of Hossain and Okui (2013) has become a popular choice
for eliciting beliefs. Danz, Vesterlund, and Wilson (2022) find that subjects report more accurate
beliefs when they are told that reporting truthfully will maximize the payment they can expect to
receive than when the payments in the binarized scoring rule are described explicitly. In keeping with
this finding, we would expect to see less distortion in behaviour in belief elicitation settings like ours
if subjects are instructed that they have incentives to choose what they believe to be the optimum,
which researchers can do only if the belief elicitation question is incentivizable.

Azrieli, Chambers, and Healy (2018) study incentives in a sequence of tasks and find that paying for
a randomly selected problem is the only incentive-compatible mechanism when allowing for a general
class of preferences. In their model, the sequence of tasks is exogenously given, whereas in ours the
belief elicitation task depends on the subjects’ choice in the main task; random selection for payment
is therefore not sufficient to ensure incentive compatibility.

2. Some examples

Example 1. A decision maker chooses an action, with a payoff that depends on unknown state of
the world. An analyst asks “what is the probability that your action is correct,” i.e, that it maximizes
the ex post payoffs.

Example 2. Similarly as in Example 1, but the analyst wants to know how much the decision maker
would be willing to pay to change their action after the state is realized.

Example 3. A Wall Street banker chooses the investments to match her expectations of future stock
returns. An analysts wants to know the probability that the banker’s choice is within x% of the
realized returns.

Example 4. A student takes a test with multiple true/false questions. His payoff is equal to the
score, i.e., the number of questions that he got right. An analyst wants to know what is the student
subjective probability that the score was above y%.
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Example 5. The test in the previous part has two parts, say, Micro and Macro. The analyst wants
to know what is the student expected score in the Micro part. Or how much better the student thinks
they did on micro vs. macro (in expectation). Or the questions on the test have different weights and
the analyst wants to ask about the fraction that are correct.

Can analyst’s questions be simply incentivized? Yes, in Examples 2 and 5. No, in Example 3.
In Example 4, it depends on the number of questions and x, but the answer is no if the number of
questions is sufficiently high and x ∈ (0, 1). In Example 1, it depends on the payoffs, but generically,
no.

3. Model

A decision-maker (DM) chooses an action and then faces a belief elicitation problem posed by a
researcher that may depend on the action she chose.

A decision problem consists of a tuple (Θ, A, u), where Θ is a finite set of states of the world, A is
a finite set of actions, and u : A −→ RΘ is a utility function specifying, for each action, the vector
of payoffs across all states. We write u(a; θ) for the θ-coordinate of the vector u(a). For each belief
p ∈ ∆(Θ), let A(p) = arg maxa∈A

∑
θ p(θ)u(a; θ) denote the set of optimal actions at p. For simplicity,

we assume that (i) there are no redundant actions, i.e., no a and a′ such that u(a) = u(a′), and (ii)
there are no dominated actions, i.e., for each a, there exists some p such that A(p) = {a}.

After choosing an action a, the DM faces a question about her belief described by a function
X : A −→ RΘ, with θ-coordinate X(a; θ). We interpret the question X(a) as asking the DM to report
her subjective expected value Ep X (a; ·) given the action a that she chose in the first stage and her
belief p. The dependence of X on a allows for the possibility that the researcher seeks information
about the DM’s beliefs that are related to the chosen action.

As the following examples illustrate, this formulation allows for considerable flexibility in what the
DM is asked to report.

Example 6. The question “is the chosen action a correct ex post?” corresponds to

X (a; θ) =

1 if a ∈ arg maxb∈A u (b; θ)

0 otherwise.

Then Ep X (a; ·) is the subjective probability of the chosen action being correct ex post.

Example 7. Given any action a0 ∈ A, the question “is action a0 correct ex post (regardless of what
action was chosen)?” corresponds to

X (a; θ) =

1 if a0 ∈ arg maxb∈A u (b; θ)

0 otherwise.



NON-DISTORTIONARY BELIEF ELICITATION 7

Then Ep X (a; ·) is the subjective probability of action a0 being correct ex post.

Example 8. The question “what is the payoff from the chosen action?” corresponds to

X (a) = u (a)

for all a. Then Ep X (a; ·) is the subjective expected value of the original decision problem (given the
chosen action a).

Example 9. The question “what is the regret from the chosen action?” corresponds to

X (a; θ) = u (a; θ) − max
b∈A

u (b; θ) .

Then Ep X (a; ·) is the subjective expected loss from the chosen action a relative to the ex post optimal
action.

The DM announces a report r ∈ R and is given a reward that depends her report, her action a, and
the realized state θ. Her overall payoff—including the payoff from the decision problem in the first
stage—is given by a bounded function V : R×A×Θ −→ [0, 1] (which we normalize to the unit interval
for convenience), the first argument of which is the DM’s report r. We refer to V as an elicitation
method.

For simplicity, we do not include the payoff u(a) explicitly in the elicitation method; adding it
would not change anything as the payoff from the elicitation problem can be adjusted accordingly
so as to give the same overall payoff. In the applications we have in mind, the researcher pays the
DM for the decision problem with some fixed probability α ∈ (0, 1) and for the belief elicitation
problem with the remaining probability 1 − α. The elicitation method V therefore takes the form
αu(a; θ) + (1 − α)V0(r, a, θ) for some V0 and some α ∈ (0, 1), where V0 is the payoff from the belief
elicitation mechanism. As is standard in the recent literature on belief elicitation, we implicitly view
V0 as the probability of winning a fixed prize to avoid any influence of risk preferences on the reported
belief.

Definition 1. A question X is incentivizable if there exists an elicitation method V such that, for
every p ∈ ∆(Θ),

arg max
r,a

Ep V (r, a, θ) ⊆
{

(Ep X (a; θ) , a) : a ∈ arg max
b∈A

Ep u (b; ·)
}

.

Any V satisfying this condition incentivizes X.

Incentivizability combines two requirements of the elicitation method: first, the payoffs at the belief
elicitation stage must not distort her action choices in the decision problem in the sense that any action
a she optimally chooses in the overall problem with payoffs V is also optimal in the original decision
problem with payoffs u; and second, the DM must have strict incentives to report her true subjective
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expectation of Ep X(a; ·) given her action choice a. For any question that cannot be incentivized, the
researcher must either give up on truthful reporting of the DM’s belief or on actions that accurately
reflect the subject’s belief in the decision problem. In particular, if the researcher is conducting an
experiment with the DM as a subject, no matter how she designs the incentives at the belief elicitation
stage, she cannot honestly tell the subjects that they will maximize their earnings by considering the
decision problem in isolation and by reporting beliefs truthfully.

Say that decision problems (Θ, A, u) and (Θ̃, Ã, ũ) are equivalent if Θ̃ = Θ, Ã = A, and, for every
p, the set A(p) of optimal actions is the same in the two problems. Note that if X is incentivizable in
some decision problem, it is also incentivizable in every equivalent problem since the payoff u enters
only through the optimal actions A(p).

For example, suppose, as described above, that V takes the form αu + (1 − α)V0 for some V0 and
α ∈ (0, 1). Consider two decision problems with respective payoffs u and ũ. If X is incentivizable using
elicitation method V (r, a, θ) = αu(a; θ) + (1 − α)V0(r, a, θ) in the problem with payoffs u, then it is
also incentivizable using elicitation method Ṽ (r, a, θ) = αũ(a; θ) + (1 − α)V (r, a, θ) in the problem
with payoffs ũ. In this context, if we have a belief elicitation mechanism V0 for which V incentivizes
X in some decision problem, it is straightforward to construct mechanisms that incentivize X in any
equivalent decision problem.

Our formulation imposes two substantive restrictions on the belief elicitation problem. First, the
DM is asked to report only a single number rather than, say, a full probability distribution. In practice,
collecting more complicated information about beliefs quickly becomes impractical in experiments. If,
however, the full probability distribution could be elicited, our problem would reduce to a standard
belief elicitation problem since there would be no need to make the question or incentives dependent
on the action chosen in the decision problem. Second, the elicited belief is based on the expectation
of some question X(a; ·). While this formulation captures many relevant cases, in principle, the
researcher may want to elicit other properties of the distribution for which our approach may not
apply.

Given a decision problem (Θ, A, u), say that two actions a, b ∈ A are adjacent if there is a belief
p ∈ ∆(Θ) such that A(p) = {a, b}, that is, at belief p, a and b are both optimal and there is no other
optimal action. Adjacency of actions a and b implies that there is a (|Θ| − 2)-dimensional set of beliefs
p ∈ ∆(Θ) such that a, b ∈ arg maxc∈A Ep u (c; ·). The adjacency graph is the undirected graph with
vertices A and edges consisting of the adjacent pairs {a, b}. Note that, since there are no redundant
or dominated actions, the adjacency graph is connected for every decision problem.

4. Sufficient conditions

We begin by identifying simple sufficient conditions under which a question X is incentivizable. In
the following section, we show that these conditions are also necessary in some natural applications.
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Definition 2. A question X is aligned with u on B ⊆ A if there exist γ : B −→ R \{0}, κ : B −→ R,
and d ∈ RΘ such that either

X (a) ≡B γ(a) (u (a) + d) + κ(a)1

or

X (a) ≡B γ(a)d + κ(a)1,

where 1 ∈ RΘ is the vector of all ones and ≡B denotes equality for all a ∈ B. We say that X is
non-trivially aligned with u on B in the former case, and trivially so in the latter case. If B = A, we
say simply that X is aligned with u (and similarly with the (non)-trivial qualifier).

Relative to the question X = u that asks the DM about the expected utility from her chosen action,
questions aligned with u allow for three changes. First, a vector d may be added to payoffs. Since d
is independent of a, this change has no effect on the optimal action in the decision problem. Then,
for each a, the question X(a) can be rescaled by a (non-zero) constant γ(a) and translated by another
constant κ(a) uniformly across θ. These changes make the question X essentially equivalent to the
question u + d. The case of X (a) ≡B γ(a)d + κ(a)1 can be viewed as a limit of these operations as d
is scaled up and γ(a) scaled down by the same constant, causing the u(a) term to vanish.

Note that for X aligned with u, the parameters γ, κ, and d are not uniquely determined in general.

Proposition 1. The following hold:

(1) For any d ∈ RΘ, X (a) = u (a) + d and X(a) = d are incentivizable.
(2) Suppose that X is incentivizable. Then, for any γ, κ : A −→ R, Y (a) = γ(a)X (a) + κ(a)1 is

also incentivizable.
(3) If X is aligned with u, then it is incentivizable.

The proposition indicates that alignment with u is sufficient for incentivizability. The proof proceeds
by construction using a standard Becker-DeGroot-Marschak (BDM) mechanism.

Proof. For the first statement, let L, M ∈ R be such that, for all a and θ, L < u(a; θ) + d(θ) < M and
L < d(θ) < M . If X (a) = u (a) + d, let

V (r, a, θ) =
rˆ

L

X (a; θ) dx +
M̂

r

xdx − M2

2 = (u (a; θ) + d (θ)) (r − L) − 1
2r2,

where d(θ) is the θ-coordinate of d. For this V , simple calculations show that the optimal choice of
r given a is Ep X (a; θ). Since the optimal r is greater than L, the optimal choice of action a is the
same as in the decision problem with utility u. A similar argument applies if X(a) = d, in which case
we let V (r, a, θ) = u (a; θ) + d (θ) (r − L) − 1

2 r2.
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For the second statement, suppose V incentivizes X. Let W (r, a, θ) = V
(

1
γ(a) (r − κ(a)) , a, θ

)
. It

is straightforward to verify that W incentivizes Y.
The third statement follows from the first two. □

For a researcher interested in eliciting a measure of the DM’s confidence in her choice of action, an
immediate implication of the proposition, captured in the following corollary, is that it is possible to
elicit the DM’s expected regret without distorting her decisions.

Corollary 1. For any decision problem, the question about payoffs in Example 8 and that about regret
in Example 9 are incentivizable, as is any question that does not depend on the chosen action (such
as that in Example 7).

It is useful to have an explicit formula for an elicitation method that incentivizes a question X
aligned with u. When X is non-trivially aligned with u, using the BDM construction from the proof
of Proposition 1 gives

V BDM (r, a, θ; γ, κ, d) = (u (a; θ) + d (θ))
(

1
γ(a) (r − κ(a)) − L

)
− 1

2

(
1

γ(a) (r − κ(a))
)2

(4.1)

= 1
γ(a)2

[
(X (a; θ) − κ(a)) (r − κ(a) − γ(a)L) − 1

2 (r − κ(a))2
]

= 1
γ(a)2

(
X (a; θ) − 1

2r − 1
2κ(a)

)
(r − κ(a)) − 1

γ(a) (X(a; θ) − κ(a))L.

Similarly, if X is trivially aligned with u, adding u(a; θ) to either of the last two lines gives V BDM .
When X is non-trivially aligned with u, the expected payoff of a DM who chooses action a and then

chooses r optimally is equal to

max
r

[
Ep [u (a; ·) + d (·)]

(
1

γ(a) (r − κ(a)) − L

)
− 1

2

(
1

γ(a) (r − κ(a))
)2]

(4.2)

= max
x

[
Ep [u (a; ·) + d (·)] (x − L) − 1

2x2
]

=1
2 (Ep [u (a; ·) + d (·)])2 − L Ep [u (a; ·) + d (·)] .

Similarly, the expected payoff is equal to Ep[u(a; ·)] + (Ep[d(·)])2
/2 − L Ep[d(·)] if X is trivially aligned

with u.
Depending on the structure of the decision problem, there can be incentivizable questions that are

not aligned with u. In particular, depending on the adjacency graph, we can extend the sufficient
condition from Proposition 1 to certain other questions.
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Say that action a is splitting if removing it from the adjacency graph makes the graph disconnected.
If B0, B1 ⊂ A are disjoint sets such that B0 ∪B1 = A\{a} and the adjacency graph contains no edges
between B0 and B1, we say that a splits the adjacency graph into B0 and B1.8

Splitting actions have the following intuitive separation property.

Lemma 1. Suppose action a splits the adjacency graph into B0 and B1. Then, for any pair of beliefs
p0 and p1 such that, for each i, some action bi ∈ Bi is optimal at pi in the decision problem, there is
a convex combination p = αp1 + (1 − α) p0 such that a is optimal at p.

Proof. Suppose not. Then all actions that are optimal at convex combinations of p0 and p1 must be
either from B0 or B1. Hence, for some such convex combination p′, the set of optimal actions contains
at least one element from each of B0 and B1. Then in any neighbourhood of p′, there must be a belief
at which there is exactly one member of each Bi that is optimal, contradicting the fact that no action
in B0 is adjacent to any action in B1. □

A splitting collection {A0, . . . , Ak} is a collection of subsets Ai ⊆ A such that
⋃

Ai = A and, for
each i and j, either Ai ∩ Aj = ∅ or Ai ∩ Aj = {a} for some splitting action a.

Example 10. Suppose the decision problem involves guessing the correct state, with the option of
opting out and choosing a safe action. The action set is A = Θ ∪ {as}, with payoffs

u(a; θ) =


1 if a = θ,

s if a = as,

0 otherwise,

where s ∈ (0, 1). If s ≥ 1/2, then the adjacency graph is a star with action as in the centre. Letting
{B0, B1} be any partition of Θ, {B0 ∪ {as}, B1 ∪ {as}} forms a splitting collection. Another splitting
collection is given by the set of pairs {θ, as} for all θ ∈ Θ.

Example 12 below describes an example with ordered actions a0 through an in which the adjacency
graph forms a line, with ai adjacent to aj if and only if |i − j| = 1. Thus {{a0, a1}, . . . , {an−1, an}}
forms a splitting collection.

We say that X is piecewise aligned with u if it is aligned with u on each element of a splitting
collection.

Theorem 1. If X is piecewise aligned with u, then it is incentivizable.

8Note that B0 and B1 need not be connected, and hence that the sets into which a splitting action splits the
adjacency graph are not uniquely determined in general.
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Proof. To keep the notation simple, we present the argument only for the case in which the splitting
collection contains two elements, A0 and A1, with splitting action a0. Extending the argument to the
general case is straightforward.

We construct an elicitation method on each Ai, then show that they agree on a0 and therefore give
rise to well-defined elicitation method on the full action set, A.

First suppose X is non-trivially aligned with u on each Ai. For each i = 0, 1, let (γi, κi, di) be such
that X(a) ≡Ai γi(a)(u(a) + d) + κ(a)1. Define the elicitation methods

(4.3) Vi (r, a, θ; wi, ωi) =
(

γi(a0)
γi(a)

)2(
X (a; θ) − 1

2r − 1
2κi(a)

)
(r − κi(a))

+ wi (θ) − ωi − γi(a0)2

γi(a) (X(a; θ) − κi(a))L,

where wi ∈ RΘ and ωi ∈ R. Note that this expression differs from the expression for V BDM in (4.1)
only by multiplication by a positive constant and addition of a function that depends only on the
state. As neither of these changes affects the optimal choices of a and r, it follows from the argument
in the proof of Proposition 1 that Vi incentivizes X on Ai (i.e., in the decision problem with actions
restricted to Ai).

Notice that

V1
(
r, a0, θ; w1, ω1

)
− V0 (r, a0, θ; w0, ω0)

=
(

X (a0; θ) − 1
2r − 1

2κ1(a0)
)

(r − κ1(a0)) −
(

X (a0; θ) − 1
2r − 1

2κ0(a0)
)

(r − κ0(a0))

+ (w1 (θ) − w0 (θ)) − (ω1 − ω0) − γ1(a0)(X(a0; θ) − κ1(a0))L + γ0(a0)(X(a0; θ) − κ0(a0))L

= X (a0; θ) (κ0(a0) − κ1(a0) + γ0(a0) − γ1(a0)) + 1
2

(
(κ1(a0))2 − (κ0(a0))2

)
+ (w1 (θ) − w0 (θ)) − (ω1 − ω0) + (γ1(a0)κ1(a0) − γ0(a0)κ0(a0))L.

Given any w0 and ω0, let

w1(θ) = w0(θ) − X (a0, θ) (κ0(a0) − κ1(a0) + γ0(a0) − γ1(a0))

for each θ, and

ω1 = 1
2
(
κ1(a0)2 − κ0(a0)2)+ ω0 + (γ1(a0)κ1(a0) − γ0(a0)κ0(a0))L.

Then V1
(
r, a0, θ; w1, ω1

)
= V0 (r, a0, θ; w0, ω0) for all r and θ.9

Let

V (r, a, θ) = Vi (r, a, θ) for each a ∈ Ai.

9In the general case with splitting collection {A1, . . . , Ak}, one can recursively define each wi+1 and ωi+1 given wi

and ωi in an analogous fashion.
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Because V0 and V1 agree for action a0, V is well defined.
In case X is trivially aligned with u on some Ai, we add γi(a0)2u(a; θ) to the expression for

Vi(r, a, θ; wi, ωi) in (4.3) and adjust the definition of w1(θ) accordingly to include any such additional
u(a0; θ) terms.

To verify that V incentivizes X, it suffices to show that at any belief p at which no action in Ai

is optimal in the decision problem, arg maxa maxr Ep[V (r, a, ·)] ⊆ Aj , where j ̸= i. Without loss of
generality, take i = 1 and j = 0, and let p0 denote such a belief.

Note first that, by (4.2), the expected value from choosing an action a ∈ Ai followed by an optimal
choice of r is equal to

(4.4) max
r

Ep[Vi(r, a, ·)] = γi(a0)2 1
2 (Ep[u (a, ·)] + Ep[d (·)])2

+ Ep[wi(·)] − ωi − Lγi(a0)2 Ep [u (a; ·) + d (·)] .

It follows that the expected value from an action b ∈ Ai is at least as large as that from an action
a ∈ Ai if and only if

1
2 (Ep[u(b; ·)] + Ep[d(·)])2 − L Ep[u(b; ·)] ≥ 1

2 (Ep[u(a; ·)] + Ep[d(·)])2 − L Ep[u(a; ·)],

which holds if and only if Ep[u(b; ·)] ≥ Ep[u(a; ·)] since the function (x + y)2/2 − Lx is increasing in x

for x + y > L and L satisfies Ep[u(a′; ·)] + Ep[d(·)] > L for all actions a′.
Suppose for contradiction that there is some b ∈ A1\ {a0} such that b ∈ arg maxa maxr Ep0 V (r, a, ·).

It follows that

max
r

Ep0 V1(r, b, ·) = max
r

Ep0 V (r, b, ·) ≥ max
r

Ep0 V (r, a0, ·) = max
r

Ep0 V1(r, a0, ·).

By the observation in the preceding paragraph,

Ep0 u (b, ·) ≥ Ep u (a0, ·) .

Let p1 be a belief at which b is strictly optimal, i.e., {b} = arg maxa Ep1 [u (a, ·)]. By Lemma 1,
action a0 must be optimal at some convex combination p = αp1 + (1 − α) p0. At the same time, the
above inequalities imply that

Ep[u (a0, ·)] = α Ep1 [u (a0, ·)] + (1 − α) Ep0 [u (a0, ·)]

< α Ep1 [u (b, ·)] + (1 − α) Ep0 [u (b, ·)]

= Ep[u (b, ·)],

contradicting the optimality of a0 at p. □

Example 11. Suppose there are 3 actions A = {a, b, c} with adjacency graph

a − b − c.
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The following question is incentivizable but not aligned with u: X(a) = u(a), X(b) = u(b), and
X(c) = 1

2 u(b) + u(c).

5. Necessary condition

We now consider necessary conditions for questions to be incentivizable. In certain important
classes of problems, these conditions will imply that, depending on the class, only questions aligned
or piecewise aligned with u can be incentivized.

From this point on, except where otherwise stated, we assume that |Θ| > 3.

5.1. Key observation. We begin with a key observation that underlies all of our necessary condi-
tions. Consider two adjacent actions, a and b. Suppose an elicitation method V incentivizes some X.
Notice that, for any fixed r, the expected value Ep[V (r, a, ·)] is affine in p. Moreover, the set of beliefs
at which a given r is optimal following action a consists of the intersection of the simplex with the
hyperplane defined by r = Ep[X(a, ·)]. If this set intersects with the set of beliefs at which both a

and b are optimal, then the value obtained from action b followed by the optimal report must itself be
affine within this intersection. This in turn implies that the optimal report r′ = Ep[X(b, ·)] following
action b must be constant along this intersection since the value for any fixed report is affine. This
observation places a strong restriction on how X(a) and X(b) are related, which is formalized in the
following lemma.

For any vector v ∈ RΘ, let
v̄ = v − 1

|Θ|
∑
θ′∈Θ

v(θ′)1.

Thus v̄ is the projection of v onto the hyperplane of vectors whose coordinates sum to 0. Recall that
two vectors u, v ∈ RΘ are collinear if there exists α ̸= 0 such that v = αu.

Let ∆b
a = ū(b) − ū(a) be the payoff difference vector.

Lemma 2 (Adjacency Lemma). Suppose that X is incentivizable. If actions a and b are adjacent,
then there exist ρ ∈ R and σ ∈ R \{0} such that

X̄ (b) = ρ∆b
a + σX̄ (a) .

If X̄(a) or X̄(b) is collinear with ∆b
a, then we can take ρ ̸= 0.

The Adjacency Lemma indicates that if X is incentivizable and a and b are adjacent actions, then
X must be aligned with u on {a, b}. To see this, note first that X is non-trivially aligned with u on a
set of actions B if and only if X̄(a) ≡B γ(a)ū(a) + d for some γ(a) ∈ R and d ∈ RΘ, and is trivially
aligned with u on B if and only if X̄(a) ≡A γ(a)d for some γ(a) ∈ R and d ∈ RΘ. If ρ = 0, then X is
trivially aligned with u on {a, b}. If ρ ̸= 0, then the alignment is nontrivial, with

d = 1
ρ

X̄(b) − ū(b) = σ

ρ
X̄(a) − ū(a),
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γ(a) = ρ/σ, and γ(b) = ρ.

Proof. Let V be an elicitation method that incentivizes X. Consider two distinct beliefs p0 and p1 such
that (i) actions a and b are both optimal in the decision problem, i.e., a, b ∈ arg maxa′ Epk

[u(a′, ·)] for
k = 0, 1), and (ii) the question X(a) attains the same value at p0 and p1, i.e., Ep0 [X(a, ·)] = Ep1 [X(a, ·)];
such a pair of beliefs exists because |Θ| > 3. Letting r = Ep0 [X(a, ·)], it follows that (a, r) is optimal
given V at all pα = αp1 + (1 − α) p0 for α ∈ [0, 1]. The optimal expected payoff Epα

[V (r, a, ·)]
is therefore linear in α. Since b is also an optimal action at each pα, the optimal expected payoff
maxs Epα

[V (s, b, ·)] must be linear in α as well. Therefore, there exists some r′ such that, for each α,
r′ ∈ arg maxs Epα [V (s, b, ·)]. In particular, Epk

[X(b, ·)] = r′ for each k = 0, 1.
Fixing p0, notice that the preceding argument applies to all p1 ∈ RΘ satisfying the following

orthogonality conditions:

(1) p1 − p0 ⊥ 1, ensuring that p1 is a well-defined belief;
(2) p1 − p0 ⊥ u(a) − u(b), ensuring that the DM is indifferent between a and b at p1; and
(3) p1 − p0 ⊥ X(a), ensuring that X(a) attains the same value at p0 as at p1.

For any such p1, the preceding argument implies that p1 − p0 ⊥ X(b).
By a standard linear algebra argument, it follows that

X(b) ∈ span (1, u(a) − u(b), X(a)) .

Noting that, for any vector v, v̄ differs from v by a scalar multiple of 1, and that v ⊥ 1, we obtain

X̄(b) = ρ (ū(a) − ū(b)) + σX̄(a)

for some ρ, σ ∈ R.
If X̄(b) is not collinear with ū(b) − ū(a), then we must have σ ̸= 0, as needed. Otherwise, switching

the roles of a and b in the preceding argument yields that X̄(a) is also collinear with ū(b) − ū(a), and
therefore one can take ρ and σ to be nonzero. □

The Adjacency Lemma provides a key tool for identifying whether a question is incentivizable.
Since it applies to every pair of adjacent actions, it tends to impose stronger restrictions when the
adjacency graph is more complete.

The Adjacency Lemma applies only when there are at least four states. If there are only two states,
any question X(a, θ) that is not constant in θ is equivalent to simply asking the DM to report her
belief, which can be easily incentivized by adding a standard scoring rule to the utility u(a). With
three states, the set of beliefs at which two adjacent actions are optimal forms a line segment. Further
restricting to a particular optimal report for one of the actions generically reduces the set to a single
point. Matching the values along the line segment does not, therefore, impose restrictions on the
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question. Cycles of adjacencies can, however, imply substantive restrictions; we expand on this point
in Section 8.

Recall that two adjacent actions share a (|Θ| − 1)-dimensional set of beliefs at which they are both
optimal. If two non-adjacent actions, a and b, “touch” in the sense that there is a nonempty set of
beliefs of dimension strictly between 0 and (|Θ| − 1) at which both are optimal, then following the
logic of the proof of the Adjacency Lemma would give rise to a weaker restriction on the relationship
between X(a) and X(b).

5.2. Adjacency trees. Suppose that, as in Examples 10 and 12, the adjacency graph is a tree. Let
A = {A0, . . . , Ak} consist of all adjacent pairs of actions; that is, Ã ∈ A if and only if Ã = {a, b} for
some adjacent actions a and b. Because the adjacency graph is a tree, A is a splitting collection.

Theorem 2. Suppose the adjacency graph is a tree. Then the following are equivalent:

(1) X is incentivizable;
(2) X is piecewise aligned with u;
(3) the conclusion of the Adjacency Lemma holds for every pair of adjacent actions.

Proof. That (2) implies (1) follows immediately from Theorem 1. That (1) implies (3) follows imme-
diately from the Adjacency Lemma. That (3) implies (2) follows from the discussion in the paragraph
immediately following the statement of the Adjacency Lemma. □

The equivalence of (1) and (2) in Theorem 2 is a special case of Theorem 5 below.

Example 12 (Second-order beliefs). The following example is a slightly simplified version of a belief-
updating experiment from Enke and Graeber (2023); the same conclusions apply to their original
experiment.

The decision problem involves forecasting a binary event. The action set and state space A = Θ =
{0, 1/n, . . . , 1} consist of (discretized) probabilities that the event occurs, where n ≥ 3. One can think
of θ as the “true” probability given the available information, which is known to the researcher but
about which the DM may be uncertain (for example because she has doubts about how to update her
beliefs in light of the information she observes). This uncertainty is captured by her belief p ∈ ∆(Θ).

The DM is rewarded more for forecasts that are closer to the state according to the payoff func-
tion u(a; θ) = −(a − θ)2. The DM optimally chooses an action closest to Ep[θ]. The adjacency
graph therefore forms a line: ai and aj are adjacent if and only if |ai − aj | = 1/n. The set
{{0, 1/n}, {1/n, 2/n}, . . . , {(n − 1)/n, 1}} forms a splitting collection.

The researcher wishes to elicit the DM’s confidence in her report by asking how likely she believes
it is that her action is within x of the true value of θ for some fixed x ∈ [0, 1/2]. This question is
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described by

X(a, θ) =

1 if |a − θ| ≤ x

0 otherwise.

To check whether X is incentivizable, we use Theorem 2.
Consider adjacent actions a and b = a + 1/n. For each θ,

u(b, θ) − u(a, θ) = −
(

a + 1
n

= θ

)2
+ (a − θ)2 = − 1

n

(
2a − 2θ + 1

n

)
.

The difference between u(b, θ)−u(a, θ) and ū(b, θ)− ū(a, θ) is the constant (a−1)2 − (a−1/n)2. Thus
we obtain ū(b, θ) − ū(a, θ) = 2a + 2θ/n − 1. In particular, the coordinates of any vector collinear with
∆b

a must feature constant differences in θ. However, there is no σ for which X̄(b) − σX̄(a) satisfies
this property. To see this, note that if x < 1/n, X̄(b) − σX̄(a) is constant across all θ /∈ {a, b}, and
if x ≥ 1/n, then its coordinates for θ = a and θ = b are equal. Therefore, there is no σ such that
X̄(b) − σX̄(a) is collinear with ∆b

a, and by Theorem 2, X is not incentivizable.
This result is not specific to the quadratic payoffs in the decision problem; the same conclusion

applies if the payoff is replaced with any strictly proper scoring rule (one for which reporting an action
close to the expectation of θ is optimal).

Faced with this result, what should the researcher do? One option is to use a difference measure of
decision confidence that is incentivizable. For instance, according to Corollary 1, the expected regret
question of Example 9 is incentivizable in every decision problem.

6. Adjacency cycles

When the adjacency graph forms a tree, the incentivizable questions are those that are piecewise
aligned with u. Cycles in the adjacency graph impose additional restrictions, further limiting which
questions are incentivizable.

An adjacency cycle is a tuple C = (a0, . . . , an) such that an = a0 and actions ai and ai+1 are
adjacent for each i = 0, . . . , n − 1. We say that n is the length of the cycle C. We abuse notation
slightly by writing a ∈ C to mean that a = ai for some i.

An adjacency cycle is internally independent if, for some a ∈ C, the set of vectors
{

∆b
a : b ∈ C \ {a}

}
is linearly independent. Let VC be the linear space spanned by

{
∆b

a : b ∈ C \ {a}
}

. The cycle C is
internally independent if and only if dimVC = n − 1, where n is the length of the cycle. Notice that
the space VC and the linear independence of

{
∆b

a : b ∈ C \ {a}
}

do not depend on the choice of a,
only on C itself.

Lemma 3. Let C be an internally independent adjacency cycle. If X is incentivizable, then either X
is aligned with u on C, or X̄(a) ∈ VC \ {0} for all a ∈ C.
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Proof. Without loss of generality, let a0 ∈ C be such that either X̄(a0) = 0 or X̄(a0) /∈ VC . (If no such
a0 exists, the lemma holds trivially.)

By Lemma 2, for each i = 1, . . . , n, we have X̄ (ai) = ρi∆ai
ai−1

+ σiX̄ (ai−1) for some σi ̸= 0 and
some ρi. Iterating these equations gives

X̄ (a0) = X̄ (an) =
n∑

i=1
Γiρi∆ai

ai−1
+ Γ0X̄ (a0) ,

where Γi = σn · · · σi+1 and Γn = 1. Because ∆a1
a0

+ · · · + ∆an
an−1

= 0, we get

n−1∑
i=1

(Γiρi − ρn) ∆ai
ai−1

+ (Γ0 − 1) X̄ (a0) = 0.

Since either X̄(a0) = 0 or X̄(a0) /∈ VC , it follows that
n−1∑
i=1

(Γiρi − ρn) ∆ai
ai−1

= 0.

Internal independence implies that Γiρi = ρn for each i = 1, . . . , n − 1.
If ρn = 0, then ρi = 0 for each i since Γi ̸= 0. In this case, all X̄(ai) are collinear, which implies

that X is trivially aligned with u on C.
For the case of ρn ̸= 0, first note that, by the same iteration as above, for each k,

X̄(ak) =
k−1∑
i=1

ρi
Γi

Γk
∆ai

ai−1
+ Γ0

Γk
X̄(a0)

= ρn

Γk

k−1∑
i=1

∆ai
ai−1

+ Γ0

Γk
X̄(a0)

= ρn

Γk
(ū(ak) − ū(a0)) + Γ0

Γk
X̄(a0).

Letting γ(ak) = ρk = ρn/Γk ̸= 0 and d = −ū (a0) + ρ−1
n Γ0X̄ (a0), we have X̄(ak) = γ(ak) (ū(ak) + d))

for all k, and thus X is (non-trivially) aligned with u on C. □

While Lemma 3 identifies conditions that an incentivizable question must satisfy on a given in-
ternally independent cycle, it says nothing about more complicated adjacency graphs. The following
lemma shows how alignment with u on multiple cycles or other subsets of actions can, under mild
conditions, be combined to obtain alignment with u on their union.

Lemma 4. Suppose X is aligned with u on sets of actions B and D. If there exist actions a0, a1 ∈ B∩D

such that X̄(a0) and X̄(a1) are not collinear, then X is aligned with u on B ∪ D.

Proof. Alignment with u on B implies that there exist γB
0 , γB

1 ∈ R and dB ∈ RΘ such that

γB
0 X̄(a0) − ū(a0) = γB

1 X̄(a1) − ū(a1) = dB .
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Similarly, for D,

γD
0 X̄(a0) − ū(a0) = γD

1 X̄(a1) − ū(a1) = dD.

Rearranging these equations gives

γB
0 X̄(a0) − γB

1 X̄(a1) = ū(a0) − ū(a1)

and γD
0 X̄(a0) − γD

1 X̄(a1) = ū(a0) − ū(a1).

Subtracting one equation from the other leads to(
γB

0 − γD
0
)

X̄(a0) −
(
γB

1 − γD
1
)

X̄(a1) = 0.

Since X̄(a0) and X̄(a1) are linearly independent, it must be that γB
k = γD

k for each k = 0, 1. This in
turn implies that dB = dD = d.

All that remains is to show that for any other action a ∈ B ∪ D, the corresponding parameters
γB

a and γD
a are equal. Since X̄(a) cannot be collinear with both X̄(a0) and X̄(a1), we can repeat the

argument replacing one of a0 or a1 with a to obtain γB
a = γD

a . □

6.1. Complete adjacency. In some common decision problems, the adjacency graph is complete.
This is the case, for instance, in Example 10 when s < 1/2.

Theorem 3. Suppose the adjacency graph is complete and |A| ≥ 4. Suppose in addition that for any
four actions a, b0, b1, b2, the set of vectors {∆bi

a }i=0,1,2 is linearly independent. Then X is incentivizable
if and only if it is aligned with u.

That alignment with u is sufficient for incentivizability follows from part (3) of Proposition 1.
Necessity follows from Theorem 4 below, which provides a more general abstract condition for arbitrary
adjacency graphs under which only questions aligned with u are incentivizable.

The main idea behind Theorem 3 is that, given any cycle C through an action a, Lemma 3 implies
that any incentivizable X is either aligned with u on C or lies in VC \ {0}. The linear independence
condition can be used to eliminate the latter possibility by considering multiple cycles through a;
more precisely, there must be some cycle C on which X is aligned with u, as the intersection of the
sets VC′ across cycles C ′ containing a is {0}. Varying a and applying Lemma 4 leads to alignment
with u on the entire action set.

Example 13. Consider a decision problem with at least four states in which the DM is asked to guess
the state and receives a reward for guessing correctly that may depend on which state is realized. Thus
A = Θ and

u(a, θ) =

rθ if a = θ

0 otherwise,
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where rθ > 0 for all θ. The adjacency graph for this problem is complete: given any two states θ and
θ′, the actions θ and θ′ are the only optimal actions at the belief that assigns probability rθ′/(rθ +rθ′)
to state θ and all of the remaining probability to state θ′.

Suppose the researcher seeks to elicit the DM’s belief about whether she correctly guessed the state,
which is described by the question

X(a, θ) =

1 if a = θ

0 otherwise.

Taking γ(a) = 1/ra and κ(a) = 0 for each a and d = 0, we see that X is aligned with u, and therefore
can be incentivized using the BDM construction of Proposition 1.

Now consider the same question X in a different decision problem where the DM can also receive
a smaller reward for a “close” guess. Let Θ = {1, . . . , n} and

u(a, θ) =


rθ if a = θ

rθ/2 if |a − θ| = 1

0 otherwise,

where minθ rθ > maxθ rθ/2 > 0. The adjacency graph for this problem is again complete. In this
case, however, X is not aligned with u. Since the linear independence condition in Theorem 3 holds,
X is not incentivizable.

6.2. General necessary conditions. A set of actions B ⊆ A is cycle-rich if it contains at least four
elements and, for any proper subset B′ ⊂ B with at least three elements, there exists a ∈ B \ B′ such
that ⋂

{VC : C is internally independent, a ∈ C, and |C ∩ B′| ≥ 2} = {0}.

The intersection above goes over all internally independent cycles that contain a and at least two
elements of B′.

Example 14. Consider a variant of Example 13 in which there is an additional safe action. Thus
A = Θ ∪ {as} with

u(a, θ) =


rθ if a = θ

s if a = as

0 otherwise.

Suppose in addition that Θ = {θ0, θ1, θ2, θ3}, with rθ = 1/2 for θ = θ0, θ1 and rθ = 1 for θ = θ2, θ3.
Let s = 3/10. Then the adjacency graph—which is depicted in Figure 6.1—is incomplete since actions
θ0 and θ1 are not adjacent, but A is cycle-rich.
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θ0

θ1

θ2

θ3
s

as

Figure 6.1. Adjacency graph for Example 14.

Theorem 4. Suppose B ⊆ A is cycle-rich. If X is incentivizable, then it is aligned with u on B.

Proof. We begin with the following observation.

Lemma 5. If X is non-trivially aligned with u on B, then for any a, b ∈ B, if X̄(a) and X̄(b) are
collinear, they are also collinear with ∆b

a.

Proof. Let a, b ∈ B be such that X̄(a) and X̄(b) are collinear and let γ(·) ̸= 0 and d be such that
X̄(a) = γ(a) (ū(a) + d) and X̄(b) = γ(b) (ū(b) + d). By the collinearity assumption, there exists α ̸= 0
such that

ū(a) + d = α (ū(b) + d) .

Because ū(a) ̸= ū(b), it must be that α ̸= 1. It follows that d = 1
1−α (αū(b) − ū(a)) and

1
γ(a) X̄(a) = ū(a) + 1

1 − α
(αū(b) − ū(a)) = α

1 − α
(ū(b) − ū(a)) ,

as needed. □

Cycle-richness implies that there is some a ∈ B and a collection of internally independent cycles C̃

with a ∈ C̃ ⊆ B for which the intersection of the spaces VC̃ is {0}. Thus either X̄(a) = 0 or X̄(a) /∈ VC

for some such cycle C. By Lemma 3, X is aligned with u on C.
Let B′ ⊆ B be a subset of B of maximal cardinality on which X is aligned with u. By the above

argument, B′ has at least three elements. Suppose for contradiction that B′ ̸= B. By the same
argument as in the preceding paragraph, cycle-richness implies that there exists a ∈ B \ B′ and a
cycle C containing a such that |C ∩ B′| ≥ 2 and either X̄(a) = 0 or X̄(a) /∈ VC . By Lemma 3, X is
aligned with u on C.

If there exists a pair of distinct actions a0, a1 ∈ C ∩ B′ such that X̄(a0) and X̄(a1) are not collinear,
Lemma 4 implies that X is aligned with u on C ∪ B′, contradicting the maximality of B′.

From now on, suppose that a0, a1 ∈ C ∩ B′ are distinct actions such that X̄(a0) and X̄(a1) are
collinear.
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If X̄(a0) and X̄(a1) are not collinear with ∆a1
a0

, then Lemma 5 implies that the alignment with u on
C and that on B′ must both be trivial, which further implies that, for all b ∈ C ∪ B′, X̄(b) is collinear
with X̄(a0). Thus, X is trivially aligned with u on C ∪ B′, contradicting the maximality of B′.

If X̄(a0) and X̄(a1) are collinear with ∆a1
a0

, then, by Lemma 2, X̄(a) ∈ span(∆a0
a , ∆a1

a0
) = VC . The

choice of cycle C implies that X̄(a) = 0. Another application of Lemma 2 shows that X̄(a0) is collinear
with ∆a0

a . But the latter contradicts collinearity with ∆a1
a0

due to the independence assumptions. The
contradiction finishes the proof of the Theorem. □

Proof of Theorem 3. It suffices to show that the set of all actions is cycle-rich; the result then follows
from Theorem 4.

Take any proper subset B ⊂ A with at least three actions b0, b1, b2 ∈ B and let a ∈ A\B. Consider
cycles Ci = B \ {bi} ∪ {a}. Then, VCi

= span{∆bj
a : j ̸= i}. The independence assumption implies

that
⋂

i VCi
= {0}. □

Theorem 5. Let {A0, . . . , Ak} be a splitting collection such that, for each l, either Al is cycle-rich
or it contains exactly two elements. If X is incentivizable, then it is piecewise aligned with u.

Proof. If Al is cycle-rich, then X is aligned with u on Al by Theorem 4. If Al contains exactly two
elements, then X is aligned with u on Al by Lemma 2. □

7. Product problems

In many experiments, subjects perform a sequence of tasks. These tasks may be identical or they
may differ; the subject’s payoff is a sum or weighted average payoff of the payoffs in the various
tasks, as in the common experimental design in which one task is randomly selected for payment (see
Charness, Gneezy, and Halladay (2016) and Azrieli, Chambers, and Healy (2018) and the references
therein). In such cases, the researcher may be interested in eliciting beliefs related to the entire
sequence of actions chosen by the subject. For example, a student may solve a test with multiple
questions—with their payoff being equal to the score—and the researcher may want to ask the subject
what she believes about her overall performance on the test. Alternatively, to gauge the impact of
learning across repetitions of the same task, the researcher may want to elicit subjects’ beliefs about
their change performance between the beginning and the end of the experiment.

To formalize this idea, we define a product problem (Θ, A, u) to be a decision problem in which
Θ = ×iΘi, A = ×iAi, and

u (a, θ) =
∑

i

ui (ai, θi)

for some sets (Θ1, . . . , ΘI) and (A1, . . . , AI), and some functions ui : Ai × Θi −→ R. As noted
above, the additive separability of u captures commonly used incentives in which one choice is ran-
domly selected for payment. We refer to each (Θi, Ai, ui) as a task. We write a−i for a profile
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000100
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Figure 7.1. Adjacency graph for Example 15 with Ω = {0, 1} and I = 3.

(a1, . . . , ai−1, ai+1, . . . , aI) and aia−i for the profile whose ith coordinate is ai and remaining coordi-
nates are given by a−i.

Example 15. The decision problem is a test consisting of I ≥ 3 multiple choice questions. The state
space and action space are given by Θ = A = ΩI , where Ω is a finite set containing at least two
elements describing the possible answers to any given question. Coordinate i corresponds to the ith
question: θi is the correct answer to question i and ai is the DM’s answer to question i. The payoff
in the decision problem is the score on the test:

u(a, θ) =
I∑

i=1
1{θi = ai}.

The DM has a belief p ∈ ∆(Θ). The optimal choice of action in each task i is the most likely state
according to the marginal distribution of p over Θi.

Note that we make no assumptions about the correlation among states across tasks: the DM can
hold any belief about the joint distribution of (θ1, . . . , θI). In particular, the DM need not view the
states as independent, nor must there be a fixed state across tasks.

Product problems share a structure that distinguishes them from the problems we have analyzed
so far. Two actions a, b ∈ A are adjacent only if they differ in exactly one task, that is, if there is
some i such that ai ̸= bi and a−i = b−i. Conversely, if ai and bi are adjacent in task i, then the
product actions aia−i and bia−i are adjacent for all a−i. The adjacency graph of the product problem
is typically neither complete (even if the adjacency graphs in each task are complete) nor a tree.

Figure 7.1 depicts one example. Note that the necessary conditions for incentivizability in Theorems
4 and 5 do not apply due to an absence of internally independent cycles. While the collection of
payoff difference vectors associated with edges exiting a single node—such as the blue edges ∆100

000,
∆010

000, and ∆001
000—are linearly independent, no cycle is internally independent because parallel edges
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correspond to identical payoff difference vectors. Thus, for instance, the orange edges correspond to
∆100

000 = ∆110
010 = ∆101

001 = ∆111
011.

We say that question X depends on task i trivially if, for each a−i, the vectors X̄(aia−i) are collinear
for all ai. The following result provides necessary and sufficient conditions for incentivizability in
product problems.

Theorem 6. Let (Θi, Ai, ui)I
i=1 be a product problem with I ≥ 3. Suppose that for each i, either Ai

contains only two actions, or the adjacency graph for problem (Θi, Ai, ui) is complete and the vectors{
∆bi

ai
, ∆ci

ai

}
are linearly independent for all ai, bi, ci ∈ Ai. Suppose in addition that there are at least

three tasks on which X does not depend on trivially. Then X is incentivizable if and only if there exist
v(a), κ (a) ∈ R with v(a) ̸= 0 for each a ∈ A, τi ∈ R for each i, and d ∈ RΘ such that

X (a, θ) = κ(a) + v(a)
(

d(θ) +
∑

i

τiui(ai, θi)
)

(7.1)

for all a and θ.

Theorem 6 requires that the question non-trivially depends on at least three tasks. If instead the
question depends non-trivially on only one problem, it is straightforward to adapt the analysis from
Section 6.1 to apply here. In the intermediate case in which the question depends non-trivially on
exactly two tasks, we do not know whether the conclusion of Theorem 6 holds.

Along the same lines as Theorem 3, we assume that each task has a complete adjacency graph.
However, relative to Theorem 3, the other requirements for each task are significantly weaker: there
are no restrictions on the number of actions, and we require linear independence only of pairs of payoff
difference vectors instead of triples.

The characterization of incentivizable questions in (7.1) is more permissive than that in Theorem 3.
If τi is constant across i, the expression in (7.1) implies that X is aligned with u. However, in contrast
to the case of a single problem with complete adjacency, there are many questions not aligned with u
that are also incentivizable (namely, those for which τi varies across i). The additional freedom in the
product problem results from a smaller number of cycles and a larger number of linear dependencies
in the payoffs.

The following example illustrates the added flexibility afforded by (7.1).

Example 16 (Example 15 continued). It is straightforward to verify that in the product problem of
Example 15, if |Ω| > 2, the adjacency graph for each problem i is complete and all pairs

{
∆bi

ai
, ∆ci

ai

}
are linearly independent. Therefore, Theorem 6 applies to any question that depends non-trivially on
at least three tasks.

Suppose the test consists of two parts: the first part comprises questions 1 through I1, while the
second part comprises questions I1 + 1 through I. Consider the question that asks the DM about the
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expected improvement in her average score from the first part of the test to the second:

X(a, θ) =
I∑

i=1
ζi1(ai = θi) where ζi =

− 1
I1

if i ≤ I1

1
I−I1

if i > I1

This question is of the form given in (7.1), and is therefore incentivizable by Theorem 6. At first
glance, this result may be surprising as X seems to create opposing incentives in the two parts of
the test. Nevertheless, X can be incentivized using a simple modification of the BDM elicitation
mechanism from Proposition 1 that involves adding the payoff from the decision problem:

V (r, a, θ) =
ˆ r

0
X(a, θ)dx +

ˆ 1

r

xdx − 1
2 +

∑
i

ui(ai, θi)

=
∑

i

(1 + rζi)ui(ai, θi) − r2

2 .

The two integral terms provide incentives for truthful reporting of r. On their own, since ζi is negative
for some i, these terms distort the incentives in the original decision problem and change the optimal
choice of a. Adding the final sum restores the correct incentives since 1 + rζi is positive for each i.

The next example illustrates the restrictiveness of (7.1).

Example 17 (Example 15 continued). Let x ∈ {1, . . . , I}. The researcher would like to elicit the
probability the DM assigns to receiving a score of at least x,10 which corresponds to the question

X(a, θ) =

1 if
∑I

i=1 1{θi = ai} ≥ x

0 otherwise.

We claim that X is not incentivizable. Since there is no problem on which X depends trivially,
Theorem 6 applies. Thus it suffices to show that X is not of the form specified in (7.1). Suppose for
contradiction that it is. Notice that there exist at least two distinct scores on the test that are either
both below x or both at least x. It follows that, given any a and i, there exist θ and θ′ such that
ai = θi ̸= θ′

i, θj = θ′
j for all j ̸= i, and X(a, θ) = X(a, θ′). From (7.1), since v(a) ̸= 0, it follows that

d(θ) + τi = d(θ′). Applying the same argument to the action a′ defined by

a′
j =

θ′
i if j = i

aj otherwise,

we obtain d(θ′) + τi = d(θ). Therefore, τi = 0 for all i. Since X(a, θ) = X(a, θ′), it now follows
that d(θ) = d(θ′). Letting a′′ be any action that agrees with θ on exactly x coordinates, including
coordinate i, we have X(a′′, θ) = 1 ̸= 0 = X(a′′, θ′), implying that d(θ) ̸= d(θ′), a contradiction.

10This question is similar to that of Möbius et al. (2022), who elicit the subject’s belief that their score on an
incentivized IQ test is above the median among the participants.
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7.1. Sketch of proof. The proof of Theorem 6 can be found in Appendix A. Here, we describe the
key ideas.

The proof that (7.1) is sufficient for incentivizability is relatively straightforward: the argument
directly extends the construction in Example 16.

For the remainder of this section, we assume that question X is incentivizable. By the Adjacency
Lemma (Lemma 2), for any pair of adjacent actions a and b, there are coefficients x(a, b) ̸= 0 and
y(a, b) such that X̄(a) = x(a, b)X̄(b) + y(a, b)∆b

a. For the purpose of this discussion, we assume that
the coefficients x(a, b) and y(a, b) are uniquely defined.

The key step in the proof is to show that each cycle a0, . . . , an = a0 of adjacent actions is exact,
that is, that

x(a0, a1)x(a1, a2) · · · x(an−1, an) = 1.

We first explain the connection between exactness of all cycles and (7.1), and then explain why all
cycles are exact.

Fix an arbitrary action a0. The exactness of all cycles implies that we can define

v(a) = x(a0, a1) · · · x(an−1, an)

for any path a0, . . . , an = a of adjacent actions, and the definition does not depend on the chosen
path.11 In particular, for any two adjacent actions, v(a) = x(a, b)v(b). Letting X̄∗(a) = 1

v(a) X̄(a) and
y∗(a, b) = 1

v(a) y(a, b), the Adjacency Lemma implies that, for any two adjacent actions a and b,

X̄∗(a) = X̄∗(b) + y∗(a, b)∆b
a.(7.2)

To illustrate how (7.2) implies (7.1), consider Example 15. Let a and b be adjacent actions,
and recall that adjacency implies there must be some task i such that a−i = b−i. Notice that
∆b

a = ∆bia−i
a = ∆bi

ai
, where the last vector refers to the payoff difference ūi(bi) − ūi(ai) in task i. We

will argue that the coefficient y∗(a, b) depends only on ai and bi, i.e., that y∗(a, b) = y∗(aia
′
−i, bia

′
−i)

for all a′
−i. Indeed, for any two problems i, j, an application of (7.2) to two paths a, bia−i, bibja−ij

and a, bja−j , bibja−ij yields

y∗(a, bia−i)∆bia−i
a + y∗(bia−i, bibja−ij)∆bibja−ij

bia−i

= y∗(a, bja−j)∆bja−j
a + y∗(bja−j , bibja−ij)∆bibja−ij

bja−j
.

Since ∆bia−i
a = ∆bibja−ij

bja−j
= ∆bi

ai
and ∆bja−j

a = ∆bibja−ij

bia−i
= ∆bj

aj , this last equation simplifies to

(y∗(a, bia−i) − y∗(bja−j , bibja−ij)) ∆bi
ai

+ (y∗(bia−i, bibja−ij) − y∗(a, bja−j)) ∆bj
aj

= 0.

11The term “exact” is borrowed from differential geometry, where an exact vector field is a gradient of a scalar
function.



NON-DISTORTIONARY BELIEF ELICITATION 27

a a−ibi

a−ici

a a−ibi

a−ijbibja−jbj

Figure 7.2. Two basic types of cycles in product problems.

Both coefficients must be equal to 0 since ∆bi
ai

and ∆bj
aj are linearly independent; in particular,

y∗(a, bia−i) = y∗(bja−j , bibja−ij).

Applying this equation repeatedly to change a−i to any a′
−i one component at a time shows that

y∗(a, bia−i) depends only on ai and bi.
Now consider Example 15 with Ω = {0, 1}. Let yi = y∗(0ia−i, 1ia−i) for any a−i. (By the previous

observation, yi is independent of the choice of a−i.) Taking b = 0 in (7.2), we obtain

X̄∗(a) = X̄∗(0) +
∑

i s.t. ai=1
yi∆1i

0i

= X̄∗(0) −
∑

i

yiūi(0i) +
∑

i

yiūi(ai).

Taking d(θ) = X̄∗(0) −
∑

i yiūi(0i), we obtain an expression of the form in (7.1).
This argument is not specific to Example 15: it extends directly to all product problems with

binary actions in every task. Extending beyond binary actions requires more care and conditions on
linear independence of payoffs within tasks. We leave the details to the formal proof.

We now return to the question of why all cycles are exact. The first step is to notice that it is
sufficient to establish the exactness of two types of cycles, depicted in Figure 7.2. Cycles of the first
type consist of three actions that differ only in choices within the same task. Those of the second type
consist of four actions that differ in choices in two tasks. Under the assumptions of Theorem 6, one
can show that all cycles can, in a sense, be decomposed into cycles of these two types whose exactness
implies exactness of the original cycle.

In Example 15, only cycles of the second type exist. Consider the four-action cycle corresponding
to the front face in Figure 7.1. A repeated application of the Adjacency Lemma (Lemma 2) along the
cycle leads to

X̄(000) = x(000, 100)x(100, 110)x(110, 010)x(010, 000)X̄(000) + s1∆11
01

+ s2∆12
02
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for some s1, s2 ∈ R. If X̄(000) is not in the subspace spanned by vectors ∆11
01

and ∆12
02

, then the
product of the x coefficients on the right-hand side must be equal to 1, meaning that the cycle is
exact. Otherwise, by analyzing a number of cases, one can show that the cycles corresponding to the
other five faces in Figure 7.1 are all exact. These five cycles can be combined in such a way that all
edges not belonging to the front face “cancel out,” thereby implying exactness of the original cycle.

8. Discussion

8.1. Three states. We have assumed throughout that there are at least four states. Our necessary
conditions for incentivizability rely on this assumption insofar as it ensures that, for any two adjacent
actions a and b, intersections of the set of beliefs at which the DM is indifferent between a and b with
the level sets of X(a, ·) or X(b, ·) have dimension at least one.

If there are only two states, the problem becomes trivial as the DM’s belief about the state can be
elicited independent of the action, which is sufficient for the researcher to determine the expectation
of any question X. With three states, eliciting the entire belief may still be a practical option as it
requires asking for only two probabilities.

If the researcher wants to ask for only one number in a problem with three states, although our
necessary conditions no longer apply, looking at adjacencies can nonetheless be useful for understand-
ing incentivizability. Suppose the overall payoff is a weighted sum of the payoff from the decision
problem and that from a scoring rule applied at the belief elicitation stage. Suppose moreover that
the scoring rule depends only on the reported belief and the realized value of X(a, θ), and not on θ

directly.12 At any belief at which the DM is indifferent between two actions, the value of truthful
reporting at the belief elicitation stage must be equal following these two actions. Depending on the
structure of the decision problem, following these constant values along cycles of adjacent actions can
imply restrictions on X; see Figure 8.1.

8.2. Independent questions. Our necessary conditions make use of independence assumptions on
the payoffs in the decision problem. Similar results can be obtained if one replaces these assumptions
with assumptions about independence of X̄ across actions. For example, along the lines of Lemma 3,
if X is incentivizable and the set of questions X̄(a) is linearly independent for actions a in some cycle
C of adjacencies, then one can show that X must be aligned with u on C. Lemma 4 can then be used
to obtain necessary conditions on the full set of actions.

8.3. Non-affine questions. We have restricted attention to eliciting beliefs about the expectation
of some function X(a). Lambert (2019) studies elicitation of “properties” of beliefs, where a property

12This is a natural restriction that we do not impose in our model; doing so would have no effect on our results.
When there are three states, we do not know whether this restriction has any bite; we expect that the convexity of the
value function would place restrictions on incentivizable questions even if the value can depend on θ directly.
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A B

C

A B

C

Figure 8.1. Problems with three states. Each triangle depicts the simplex of beliefs.
The black line segments illustrate the partition of the simplex according to which
action is optimal. Blue line segments represent sets of beliefs on which X(a∗) is
constant for the optimal action a∗. In the left triangle, because the blue lines form a
triangle, adjacency considerations do not rule out incentivizability of X. In the right
triangle, X is not incentivizable if the payment for elicitation depends only on the
value of X and the reported belief.

corresponds to a partition of the simplex. He characterizes which properties are incentivizable, i.e.,
for which ones there exists a scoring rule incentivizing truthful reporting when the DM is asked only
about the property associated with her belief. A question X(a) in our framework corresponds to a
property that partitions the simplex into parallel hyperplanes (unless the question is trivial, in which
case there is a single property for the entire simplex). This formulation captures many properties
of interest and ensures incentivizability in the absence of an additional decision problem, or if the
question is independent of the action choice. There are, however, properties—such as the median
of some X—which may be of interest that are incentivizable in Lambert’s context but to which our
results do not apply. Nonetheless, we expect our general approach of focusing on adjacencies between
actions to be useful for such non-affine questions.

8.4. Multi-dimensional question. In our model, we assume that the researcher can only ask a single
question. Here, we show how our methods can be extended to multiple questions. For simplicity, we
focus on the case of two questions; the logic extends directly to more than two questions.

We say that questions X, Y : A −→ RΘ are jointly incentivizable if there exists an elicitation method
V : R2 × A × Θ −→ [0, 1] such that, for every p ∈ ∆(Θ),

arg max
a,r,s

Ep V (r, s, a, θ) ⊆
{

(Ep X (a; θ) , Ep Y (a; θ) , a) : a ∈ arg max
b∈A

Ep u (b; ·)
}

.

If X and Y are both aligned with u, it is straightforward to extend Proposition 1 to show that they
are jointly incentivizable.

For necessary conditions, our key result—Lemma 2—extends as follows.
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Lemma 6. Suppose that X and Y are jointly incentivizable. If actions a and b are adjacent, then
there are ρX , ρY and σy

x for x, y = X, Y , not all equal to 0, such that

X̄ (b) = ρX (ū(b) − ū(a)) + σX
X X̄ (a) + σY

X Ȳ (a)

and Ȳ (b) = ρY (ū(b) − ū(a)) + σX
Y X̄ (a) + σY

Y Ȳ (a) .

If X̄(a) or X̄(b) is collinear with ū(b) − ū(a), then we can take ρ ̸= 0.

The proof, which we omit, follows the same reasoning as that of Lemma 2. We leave to future
research the details of how to use this lemma to identify precise conditions for joint incentivizability.

8.5. Robust scoring rules. We have assumed throughout that the researcher knows the utility func-
tion in the decision problem. This assumption is reasonable in many lab experiments, but questionable
in other settings—such as field experiments—in which a researcher may want to elicit beliefs. Suppose
instead that the researcher has in mind a set of possible utility functions, and requires that questions
be incentivizable for every utility function in that set. For questions that (as in our model) are in-
dependent of the utility function, this requirement is typically very demanding. For instance, under
the conditions of Theorem 3, X must be aligned with every u. Notice, however, that some questions
are naturally formulated in a way that depends on the utility function; the expected ex post regret
of Example 2 is one such question. Allowing X to depend on u accommodates these questions. Our
results can then be applied separately for each utility function in the set considered by the researcher
to determine whether a question is incentivizable.

Appendix A. Proof of Theorem 6

This Appendix is divided into the following subsections. Section A.1 shows that each incentivizable
question in the product problem can be decomposed into linearly independent vectors that correspond
to different tasks. We use this decomposition together with Lemma 2 to derive restrictions on questions
for adjacent actions. Subsections A.2 to A.5 show that all adjacency cycles are exact. Section A.3
develops useful tools, and Sections A.4 and A.5 deal with different classes of cycles. Section A.6
concludes the proof.

A.1. Decomposition. Assume throughout that X is incentivizable.
For each i and each ti ∈ Θi, let ei (ti) ∈ RΘ be the vector such that, for each θ ∈ Θ, ei (θ|ti) =

1 {θi = ti}. Let Ei = span {ei (ti) : ti ∈ Θi} be the linear subspace spanned by such vectors. Notice
that we can interpret

∆bi
ai

= ūi(ai) − ūi(bi) =
∑

ti

(ūi(ti|ai) − ūi(ti|bi)) ei(ti)

for each i, ai, and bi as a vector in the subspace Ei. Let E0 be a complementary space to the sum of
E1 through EI . Note that the subspaces Ei are linearly independent.
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For each a, X̄(a) admits a unique decomposition

X̄(a) =
I∑

i=0
wi(a)(A.1)

with wi(a) ∈ Ei for all i. Note that the vectors w0(a), w1(a), . . . , wI(a) are linearly independent.
Take any a, b, and i, such that a−i = b−i. By Lemma 2, there are x(a, b) ̸= 0 and y(a, b) such that

X̄(a) = x(a, b)X̄(b) − y(a, b)∆a
b . Using the above decomposition, we have

0 =
[
wi(a) − x(a, b)wi(b) − y(a, b)∆ai

bi

]
+
∑
j ̸=i

[wj(a) − x(a, b)wj(b)] + [w0(a) − x(a, b)w0(b)] .

The proof of Lemma 2 shows that x(a, b) is uniquely defined if and only if X̄(a) ̸= 0 and X̄(a) is not
collinear with ∆ai

bi
. When this is not the case, we say that the transition (a, b) is free. The values of

x(a, b) for free transitions are carefully chosen below. Our choice always satisfies x(a, b)x(b, a) = 1
(which always holds for non-free transitions). Let x(a, a) = 1.

Because all vectors in square brackets form a linearly independent system, all these vectors must
be equal to 0:

wi(a) − x(a, b)wi(b) = y(a, b)∆ai

bi
,(A.2)

wj(a) − x(a, b)wj(b) = 0 for each j ̸= i,(A.3)

w0(a) − x(a, b)w0(b) = 0.(A.4)

Lemma 7. For each a, there exist γi(a) ̸= 0 and vectors w∗
i (ai) for each i = 1, . . . , I and γ0(a) ̸= 0

and a vector w∗
0 such that

wi(a) = γi(a)w∗
i (ai) for each i, and w0(a) = γ0(a)w∗

0.

Proof. For the first claim, fix an action a∗. For each ai, let w∗
i (ai) = wi(a∗

−iai). For each a, fix an
arbitrary a path of adjacent actions a0 = a∗

−iai, . . . , an = a such that for each l < n, al
i = ai. A

repeated application of (A.3) shows that

wi(a) = x(an, an−1) · · · x(a1, a0)w∗
i (ai).

Let γi(a) = x(an, an−1) · · · x(a1, a0).
For the second claim, fix w∗

0 = w0(a∗) and repeatedly apply (A.4). □

This result says that, for a fixed ai, the vectors wi(a−iai) for a−i are either all collinear or all equal
to 0.

Lemma 8. For each i, one of the following is true:

(a) w∗
i (ai) = 0 for each ai,
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(b) there exists a0
i ∈ Ai such that w∗

i (a0
i ) = 0 and w∗

i (ai) ̸= 0 for each ai ̸= a0
i ,

(c) w∗
i (ai) ̸= 0 for each ai.

If question X does not depend trivially on problem i, then there is an action ai such that w∗
i (ai) ̸= 0.

Proof. Suppose that there are three different actions ai, bi, and ci such that w∗(ai) = w∗(bi) = 0 and
w∗(ci) ̸= 0. Equation (A.2) together with Lemma 7 implies that wi(ci) is simultaneously collinear
with ∆ai

ci
and ∆bi

ci
. But the latter is impossible given the independence assumption.

For the last claim, suppose that w∗(ai) = 0 for each ai. Equation (A.2) implies that y(a, b) = 0
for each a and b such that a−i = b−i. But then, for each a−i, the vectors X̄(a−iai) and X̄(a−ibi) =
x(a−ibi, a−iai)X̄(a−iai) are collinear. Hence, X depends on problem i trivially. □

Because X depends non-trivially on at least three problems, Lemma 8 implies that at least three
problems satisfy (b) or (c).

A.2. Exact cycles. Say that an adjacency cycle a0, . . . , an = a0 is exact if

x(a0, a1)x(a1, a2) · · · x(an−1, an) = 1.

The goal of this subsection as well as subsections A.3 to A.5 is to prove the following result.

Lemma 9. The values x(a, b) for free transitions (a, b) can be chosen so that (i) x(a, b)x(b, a) = 1
for all adjacent a and b, and (ii) every adjacency cycle is exact.

We begin with the following observation.

Lemma 10. Suppose that w∗
0 ̸= 0. Then, all adjacency cycles are exact.

Proof. The result follows from a repeated application of equality (A.4). □

From now on, we assume that w∗
0 = 0.

A.3. Tools. The two results in this section develop tools that we use in the subsequent analysis.
The first tool allows us to replace the question of whether a cycle is exact with an analogous

question about related cycles. For each path c = (a0, . . . , anc) and each transition (a, b) between two
adjacent actions, define

mb
a(c) = #

{
l < nc : al = a, al+1 = b

}
− #

{
l < nc : al = b, al+1 = a

}
.

Lemma 11. Suppose that, for some adjacency cycle c, there exists a collection D of exact adjacency
cycles such that for each adjacent pair a, b, mb

a(c) =
∑

d∈D mb
a(d). Then cycle c is exact.
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Proof. Let ≺ be an arbitrary strict order on the set of actions A. Then,∏
l<nc

x(ac,l, ac,l+1) =
∏
a≺b

(x(a, b))mb
a(c) =

∏
a≺b

(x(a, b))
∑

d∈D
mb

a(d)

=
∏
d∈D

∏
a≺b

(x(a, b))mb
a(d) =

∏
d∈D

∏
l<nd

x(ad,l, ad,l+1) = 1,

where the last equality comes from the fact that cycles in D are exact. □

The second result shows that it is enough to consider a particular category of “small” cycles.

Lemma 12. Each adjacency cycle is exact if and only if the following cycles are exact:

(1) (a, b, a) for any two adjacent actions a and b,
(2) (a, b, c, a) for any three actions a, b, and c such that a−i = b−i = c−i,
(3) (a, a−ibi, a−ijbibj , a−jbj , a) for any action a, any i ̸= j, and any bi and bj.

Proof. Take any “large” cycle of adjacent actions a = a0, . . . , an = a and let il be such that, for each
l < n, al

−il
= al+1

−il
. For future reference, notice that if the action in some problem i is ever changed,

then it must be changed at least twice: if il = i for some l, then there is some l′ ̸= l such that il′ = i.
We use the “small” cycles to re-order and reduce the “large” cycle without changing the value of the
product of associated the x terms:

• if il > il+1 for l < n − 1 we use the “small” cycle of type (3) to switch the order of the two
problems, i.e., replace the cycle fragment . . . , al, al+1, al+2, . . . , where al+1 = al

−il
al+2

il
, with

. . . , al, al
−il+1

al+2
il+1

, al+2, . . . ;
• if il = il+1, including in−1 = i0, we use either type (1) or type (2) to reduce the “large” cycle,

i.e, replace the cycle fragment . . . , al, al+1, al+2, . . . with . . . , al, al+2, . . . in the case of a type
(2) cycle or with . . . , al, . . . in the case of a type (1) cycle.

Consider a process in which one of the above operations is applied until it cannot be applied
anymore. Because the operations either reduce the size of the cycle or they re-order problems in an
increasing direction, the process never reverts and it will eventually stop. If the process stops at a
single-element cycle a, then, because x(a, a) = 1, the original cycle must be exact.

Otherwise, the process stops with a non-trivial cycle a = a0, . . . , am = a for some 2 ≤ m ≤ n.
Then it must be that il < il + 1 for each l < m. But this contradicts the earlier observation that, in
an adjacency cycle, if i appears at least once, it must appear at least twice. □

A.4. Cycles without free transitions. Here, we consider the exactness of small cycles without free
transitions. We refer to i from the definition of type (2) cycles as the relevant problem for this cycle;
similarly, we refer to i and j as the relevant problems for type (3) cycles. We say that a type (2)
or type (3) cycle

(
a0, . . . , an = a0) is grounded if there exists some k such that k is not a relevant

problem and w∗
k(a0

k) ̸= 0.
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Lemma 13. Any grounded type (2) or type (3) cycle is exact.

Proof. Suppose that w∗
k(a0

k) ̸= 0 for some irrelevant problem k. Then wk(ai) ̸= 0 for each action ai in
the cycle. A repeated application of (A.3) shows that for each l ≤ n,

wk(al) = wk(a)x(a0, a1) · · · x(al−1, al).

The result follows from the fact that an = a0. □

Lemma 14. Suppose that for some a and i ̸= j and any bi and bj, (a, a−ibi, a−ijbibj , a−jbj , a) is a
type (3) “small” cycle such that either (i) w∗

i (ai) ̸= 0 and w∗
i (ai) is not collinear with ∆bi

ai
, or (ii)

w∗
j (aj) ̸= 0 and w∗

j (aj) is not collinear with ∆bj
aj . Then the cycle is exact.

Proof. Using A.2 and A.3, we get

x(a−ibi, a−ijbibj)
(
x(a, a−ibi)wi(a) + x(a, a−ibi)∆bi

ai

)
= x(a−ibi, a−ijbibj)wi(a−ibi)

= wi(a−ijbibj)

= x(a−jbj , a−ijbibj)wi(a−jbj) + y(a−jbj , a−ijbibj)∆bi
ai

= x(a−jbj , a−ijbibj)x(a, a−jbj)wi(a) + y(a−jbj , a−ijbibj)∆bi
ai

.

Suppose without loss of generality that w∗
i (ai) ̸= 0 and w∗

i (ai) is not collinear with ∆bi
ai

, which implies
that wi(a) ̸= 0 and wi(a) is not collinear with ∆bi

ai
. The first and the last line of the above sequence

of equalities yield

x(a−ibi, a−ijbibj)x(a, a−ibi) = x(a−jbj , a−ijbibj)x(a, a−jbj).

Hence, the cycle is exact. □

Lemma 15. Suppose that a type (2) or type (3) “small” cycle is such that w∗
i (ai) ̸= 0 for each action

a in the cycle and each relevant problem i. Then it is exact.

Proof. If the cycle is grounded, the result follows from Lemma 13. Accordingly, suppose henceforth
that the cycle is not grounded. Then, because of Lemma 8, and due to the assumption that at
least three different problems are nontrivial, there exist non-relevant k and action bk ̸= ak such that
w∗

k(bk) ̸= 0.
Suppose that the original cycle (a, a−ibi, a−ijbibj , a−jbj , a) has type (3). The cycle corresponds to

the orange face on the left-side of Figure A.1. Consider the type (3) cycles that are associated with
all five remaining faces of the cube:

• a, a−ibi, a−ikbibk, a−kbk, a;
• a−ibi, a−ijbibj , a−ijkbibjbk, a−ikbibk, a−ibi;
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a a−ibi

a−ijbibja−jbj

a−kbk

a−ikbibk

a−ijkbibjbka−jkbjbk

a a−ibi

a−ici

a−kbk

a−ikbibk

a−ikcibk

Figure A.1. Small cycles of type (3) and type (2)

• a−jbj , a−jkbjbk, a−ijkbibjbk, a−ijbibj , a−jbj ;
• a, a−kbk, a−jkbjbk, a−jbj , a;
• a−kbk, a−ikbibk, a−ijkbibjbk, a−jkbjbk, a−kbk.

The first cycle corresponds to the bottom face, the second to the right face, the third to the top face,
the fourth to the left face, and the fifth to the back face. All five cycles are grounded, and hence exact
by Lemma 13. Moreover, the conditions of Lemma 11 are satisfied. Therefore, the original cycle is
exact as well.

An analogous argument applies to type (2) cycles (see the right panel of Figure A.1). □

Lemma 16. If a type (2) or (3) cycle has no free transitions, then it is exact.

Proof. By Lemmas 13 and 15, it is enough assume that the cycle is not grounded and w∗
i (ai) = 0 for

some relevant i and action a in the cycle. It follows that w∗
k(ai) ̸= 0 if and only if k = j, where j is

the other relevant problem of the cycle.
In such a case, if the cycle were of type (2), all transitions to action a would be free.
Suppose the cycle is of type (3). Let b be the action in the cycle such that a−j = b−j . Then

X̄(a) = γj(a)w∗
j (aj)

and X̄(b) = γj(b)w∗
j (bj) = x(a, b)γj(a)w∗

j (aj) + y(a, b)∆bj
aj

.

Because the transition (a, b) is not free, it must be that w∗
j (aj) ̸= 0 and w∗

j (aj) is not collinear with
∆bj

aj . Lemma 14 therefore implies that the cycle is exact.
□

A.5. Cycles with free transitions. Next, we consider cycles with free transitions.
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Notice first that, if a transition between adjacent actions a and b such that a−i = b−i is free, then
it must be that w∗

j (aj) = 0 for each j ̸= i. Indeed, if, for some α ̸= 0,

X̄(a) = αX̄(b) = x(a, b)X̄(b) + y(a, b)∆bi
ai

,

then X̄(b), and hence X̄(a), must be collinear with ∆bi
ai

. Because of the linear independence of ∆bi
ai

and wj(a) for each j ̸= i, it must be that wj(a) = 0, and hence w∗
j (aj) = 0. We refer to this property

as the test for freeness of the transition (which provides necessary conditions). It follows that, if j ̸= i

is non-trivial, then aj = a0
j .

In what follows, we consider two cases:

I: There exists a single non-trivial i such that w∗
i (ai) ̸= 0 for all ai. Assume without loss of

generality that i = I. In this case, all free transitions must be between adjacent actions a and
b such that a−I = b−I . Moreover, it must be that w∗

I (aI) and w∗
I (bI) are collinear with ∆bI

aI
.

Assume without loss of generality that problem 1 is non-trivial and fix action b1 ̸= a1 so
that w∗(b1) ̸= 0. Let

x(a, b) = x(a, a−1b1)x(a−1b1, a−1Ib1bI)x(a−1Ib1bI , b).

The above definition implies that the cycle (a, a−1b1, a−1Ib1bI , b, a) is exact. This cycle cor-
responds to the red face(s) in Figure A.5. The orange edge corresponds to the free transition.
Notice that each red face cycle contains only one free transition. This is because of the test:
all other transitions of the cycle either keep fixed the action in problem I or the action b1,
and those actions are associated with non-zero w∗

· (·) vectors.
There are three types of cycles that contain free transitions, which are depicted as orange

faces in Figure A.5.
The top left panel corresponds to the cycle (a, a−ibi, a−iIbibI , a−IbI , a) when problem i is

non-trivial. In this case, bi ̸= a0
i , and, by Lemma 8, w∗

i (bi) ̸= 0. The test implies that none
of the other transitions in the orange cycle are free: either action bi or action aI is fixed.
Analogously, an application of the test shows that none of the other cycles (the uncolored
faces) is free: one of the actions aI , bi, or b1 is fixed. Proceeding as in the proof of Lemma
15, we see that this cycle is exact.

The top right panel corresponds to a situation when problem i is trivial. In this case, the
transition (a−ibi, a−iIbibI) is free and x (a−ibi, a−iIbibI) can be chosen to make the cycle on
the bottom face exact. None of the other transitions are free. Because the red face and the
uncolored cycles are exact, the above argument implies that the orange face cycle is exact as
well.

The bottom panel corresponds to the orange cycle (a, a−IbI , a−IcI , a). The other transi-
tions of the orange cycle are not free (otherwise, w∗(aI) would be collinear with ∆cI

aI
, which
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a−ibi a−iIbibI

a−IbIa

a−1ib1bi

a−1iIb1bibI

a−1Ib1bIa−1b1

a−ibi a−iIbibI

a−IbIa

a−1ib1bi

a−1iIb1bibI

a−1Ib1bIa−1b1

a a−IcI

a−IbI

a−1b1

a−1Ib1cI

a−1Ib1bI

Figure A.2. Cycles with free transitions in case I.

would violate linear independence of the latter vector with ∆bI
aI

). All other transitions fix one
of the actions: aI , bI , cI , or b1. Hence, due to the test, none of the remaining transitions are
free. The claim follows from the same reasoning as in Lemma 15.

II: For all non-trivial i, there exists a unique a0
i such that w∗

i (a0
i ) = 0. Let a0 be the product

problem action that consists of actions a0
i . Assume without loss of generality that problem

i = 1 is non-trivial. Fix action a∗
1 ̸= a0

1.
In this case, a transition is free if and only if it takes the form (a0

−iai, a0) for some i. Indeed,
the above observation implies that if transition (a, b) is free, then a−i = a0

−i. Furthermore,
if neither a = a0 nor b = a0, then both w∗

i (ai) and w∗
i (bi) must be collinear with ∆bi

ai
. But,

together with the linear independence assumption, this implies that w∗
i (ai) is not collinear

with ∆a0
i

ai , which contradicts the fact that x(a, a0)γi(a)w∗
i (ai) + y(a, a0)∆a0

i
ai = 0.
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For each b1 ̸= a∗
1, each i ̸= 1, and each bi, let

x(a0
−1a∗

1, a0) = 1,

x(a0
−1b1, a0) = x(a0

−1b1, a0
−1a∗

1),

and x(a0
−ibi, a0) = x(a0

−ibi, a0
−1ia

∗
1bi)x(a0

−1ia
∗
1bi, a0

−1a∗
1).

By the above definition, the cycles (a0, a0
−1b1, a0

−1a∗
1, a0) and (a0, a0

−ibi, a0
−i1a∗

1bi, a0
−1a∗

1, a0)
are exact. These cycles correspond to the red faces in Figure A.5.

There are three types of cycles that contain free transitions in this case other than the
cycles listed above.

First, consider a cycle (a0, a0
−ibi, a0

−ijbibj , a0
−jbj , a0) for i ̸= 1. This cycle is depicted in

orange on the left panel of Figure A.5. The two cycles depicted in red are exact due to the
choice of the x coefficients. Finally, all of the other cycles are exact because they do not
contain free transitions.

a0
−ijbibj a0

−ibi

a0a0
−jbj

a0
−1ija∗

1bibj

a−1ia
∗
1bi

a0
−1a∗

1a0
−1ja∗

1bj

a0
−ibi a0

−ici

a0

a0
−1ia

∗
1bi

a0
−1ia

∗
1ci

a0
−1a∗

1

a0
−1b1 a0

−1c1

a0

a0
−1a∗

1

Figure A.3. Cycles with free transitions in case II.

Second, consider a cycle (a0, a0
−ibi, a0

−ici, a0) for i ̸= 1. This cycle corresponds to front wall
depicted in orange on the right panel of Figure A.5. The two cycles depicted in red are exact



NON-DISTORTIONARY BELIEF ELICITATION 39

due to the choice of the x coefficients. All of the other cycles (corresponding to the back and
bottom walls) are exact because they do not contain free transitions.

Third, consider a cycle (a0, a0
−1b1, a0

−1c1, a0). This cycle corresponds to the front wall
depicted in orange on the bottom panel of Figure A.5. The two cycles depicted in red (cor-
responding to the left and right walls) are exact due to the choice of the x coefficients. The
remaining cycle (corresponding to the bottom wall) is exact because it does not contain any
free transitions.

Proceeding as in the proof of Lemma 15, we see that each of the considered cycles is exact.

Together with Lemma 16, this concludes the proof of Lemma 9.

A.6. Conclusion of the proof of Theorem 6. Recall that wi(a) = γi(a)w∗
i (ai). The next result

delivers additional information about the function γi(·).

Lemma 17. There exist γ : A −→ R, γ∗
i : Ai −→ R, and γ∗

0 ∈ R such that, for each a, γi(a) =
γ(a)γ∗

i (ai) for each i = 1, . . . , I, and γ0(a) = γ(a)γ∗
0 . In addition, x(a, b) = γ(a)

γ(b) for any two adjacent
actions a and b.

Proof. Fix an action a∗. For each a, find a path of adjacent actions a∗ = a0, . . . , am = a. Define

γ(a) = x(am, am−1) · · · x(a1, a0).

Lemma 9 implies that γ(a) is well defined in that its definition does not depend on the choice of path
from a∗ to a. Moreover, for any two adjacent actions a and b, if a∗ = a0, . . . , am = a is an adjacency
path from a∗ to a, then a∗ = a0, . . . , am, b is an adjacency path from a∗ to b, and

γ(b) = x(b, a)x(am, am−1) · · · x(a1, a0) = x(b, a)γ(a).

Let γ∗
i (ai) = γi(a∗

−iai)/γ(a∗
−iai). The claim for i > 0 follows from the fact that, for each a, if

w∗
i (ai) ̸= 0, then

wi(a) = γi(a)
γi(a∗

−iai)
wi(a∗

−iai) = γ(a)
γ(a∗

−iai)
wi(a∗

−iai).

A similar argument establishes the claim for i = 0 (see also the proof of Lemma 7). □

Lemma 18. There exist y∗
i ∈ R and di ∈ Ei such that

γ∗
i (ai)w∗

i (ai) = y∗
i ūi(ai) + di for any ai.
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Proof. By (A.2), for any actions a and b such that a−i = b−i,

γ∗
i (ai)w∗

i (ai) − γ∗
i (bi)w∗

i (bi) = 1
γ(a)wi(a) − 1

γ(b)wi(b)(A.5)

= 1
γ(a) (wi(a) − x(a, b)wi(b))

= 1
γ(a)y(a, b)∆ai

bi
.

Because the left-hand side and ∆ai

bi
do not depend on a−i, neither does y(a, b)/γ(a). Let y∗(ai, bi) =

y(a, b)/γ(a).
If problem i has only two actions, it is easy to see that y∗

i (ai, bi) = y∗
i (bi, ai) =: y∗

i . The claim
follows.

If problem i has at least three actions, take a, b, and c such that a−i = b−i = c−i and ai, bi, and
ci are distinct. Applying the above equation to pairs (a, b), (b, c), and (c, a) yields

y∗
i (ai, ci)∆ai

bi
+ y∗

i (ai, ci)∆bi
ci

= y∗
i (ai, ci)∆ai

ci

= γ∗
i (ai)w∗

i (ai) − γ∗
i (ci)w∗

i (ci)

= γ∗
i (ai)w∗

i (ai) − γ∗
i (bi)w∗

i (bi) + γ∗
i (bi)w∗

i (bi) − γ∗
i (ci)w∗

i (ci)

= y∗
i (ai, bi)∆ai

bi
+ y∗

i (bi, ci)∆bi
ci

.

The independence assumption implies that y∗
i (ai, bi) = y∗

i (bi, ci). Because the claim holds for arbitrary
and distinct actions, there must be y∗

i such that for all ai and bi, we have y∗
i (ai, bi) = y∗

i .
Finally, fix a∗

i and take di = γ∗
i (ai)w∗

i (ai) − y∗
i ūi(a∗

i ). The claim follows from equation (A.5). □

Substituting the observations from the two lemmas back into (A.1), we obtain

X̄(a) =
n∑

i=0
wi(a)

= γ(a)
(

n∑
i=1

γ∗
i (ai)w∗

i (ai) + γ0w∗
0

)

= γ(a)
(

n∑
i=1

y∗
i ūi(ai) +

[
n∑

i=1
di + γ0w∗

0

])
.

Let d be the vector in the square brackets. The result follows.

A.7. Converse. We have shown that (7.1) is necessary for incentivizability. All that remains is to
show that it is sufficient.

Notice that if τi > 0 for all i, the product problem is equivalent (in terms of optimal choices) to a
problem with payoffs

u (a, θ) =
∑

i

τiui (ai, θi) .
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In this latter problem, any X satisfying (7.1) is aligned with u, and is therefore incentivizable. This
in turn implies that X is incentivizable in the original problem.

If τi ≤ 0 for some i, note that, by Proposition 1, to show that X of the form described in (7.1) is
incentivizable, it suffices to show that

X(a, θ) = d(θ) +
∑

i

τiui(ai, θi)

is, where we may assume |τi| < 1 for all i. Letting

V (r, a, θ) =
ˆ r

0
X(a, θ)dx +

ˆ 1

r

xdx − 1
2 +

∑
i

ui(ai, θi)

= rd(θ) +
∑

i

(1 + rτi)ui(ai, θi) − r2

2 ,

the optimal choice of a is the same as in the original problem since 1 + rτi > 0 for all i and r, and the
optimal choice of r is Ep[X(a, θ)], as needed.
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